适用于自管理 Neo4j 数据库的图分析无服务器
1. 先决条件
本笔记本要求有一个可用的 Neo4j 实例,并且图分析无服务器功能已为您的 Neo4j Aura 项目启用。
您还需要安装 graphdatascience
Python 库,版本为 1.15
或更高。
%pip install "graphdatascience>=1.15"
2. Aura API 凭证
管理 GDS 会话的入口点是 GdsSessions
对象,它需要创建Aura API 凭证。
import os
from graphdatascience.session import AuraAPICredentials, GdsSessions
client_id = os.environ["AURA_API_CLIENT_ID"]
client_secret = os.environ["AURA_API_CLIENT_SECRET"]
# If your account is a member of several projects, you must also specify the project ID to use
project_id = os.environ.get("AURA_API_PROJECT_ID", None)
sessions = GdsSessions(api_credentials=AuraAPICredentials(client_id, client_secret, project_id=project_id))
3. 创建新会话
通过调用 sessions.get_or_create()
并传入以下参数来创建新会话:
-
一个会话名称,通过再次调用
get_or_create
可以重新连接到现有会话。 -
包含可访问的自管理 Neo4j DBMS 实例的地址、用户名和密码的
DbmsConnectionInfo
。 -
会话内存。
-
云位置。
-
一个生存时间 (TTL),它确保会话在闲置达到设定的时间后自动删除,以避免产生费用。
有关参数的更多详情,请参阅 API 参考文档或手册。
from graphdatascience.session import AlgorithmCategory, CloudLocation, SessionMemory
# Explicitly define the size of the session
memory = SessionMemory.m_8GB
# Estimate the memory needed for the GDS session
memory = sessions.estimate(
node_count=20,
relationship_count=50,
algorithm_categories=[AlgorithmCategory.CENTRALITY, AlgorithmCategory.NODE_EMBEDDING],
)
print(f"Estimated memory: {memory}")
# Specify your cloud location
cloud_location = CloudLocation("gcp", "europe-west1")
# You can find available cloud locations by calling
cloud_locations = sessions.available_cloud_locations()
print(f"Available locations: {cloud_locations}")
import os
from datetime import timedelta
from graphdatascience.session import DbmsConnectionInfo
# Identify the Neo4j DBMS
db_connection = DbmsConnectionInfo(
uri=os.environ["NEO4J_URI"], username=os.environ["NEO4J_USER"], password=os.environ["NEO4J_PASSWORD"]
)
# Create a GDS session!
gds = sessions.get_or_create(
# give it a representative name
session_name="people-and-fruits-sm",
memory=memory,
db_connection=db_connection,
ttl=timedelta(minutes=30),
cloud_location=cloud_location,
)
4. 列出会话
您可以使用 sessions.list()
来查看每个已创建会话的详细信息。
from pandas import DataFrame
gds_sessions = sessions.list()
# for better visualization
DataFrame(gds_sessions)
5. 添加数据集
我们假设已配置的 Neo4j 数据库实例是空的。您将使用标准 Cypher 添加数据集。
在更真实的场景中,此步骤已经完成,您只需连接到现有数据库即可。
data_query = """
CREATE
(dan:Person {name: 'Dan', age: 18, experience: 63, hipster: 0}),
(annie:Person {name: 'Annie', age: 12, experience: 5, hipster: 0}),
(matt:Person {name: 'Matt', age: 22, experience: 42, hipster: 0}),
(jeff:Person {name: 'Jeff', age: 51, experience: 12, hipster: 0}),
(brie:Person {name: 'Brie', age: 31, experience: 6, hipster: 0}),
(elsa:Person {name: 'Elsa', age: 65, experience: 23, hipster: 1}),
(john:Person {name: 'John', age: 4, experience: 100, hipster: 0}),
(apple:Fruit {name: 'Apple', tropical: 0, sourness: 0.3, sweetness: 0.6}),
(banana:Fruit {name: 'Banana', tropical: 1, sourness: 0.1, sweetness: 0.9}),
(mango:Fruit {name: 'Mango', tropical: 1, sourness: 0.3, sweetness: 1.0}),
(plum:Fruit {name: 'Plum', tropical: 0, sourness: 0.5, sweetness: 0.8})
CREATE
(dan)-[:LIKES]->(apple),
(annie)-[:LIKES]->(banana),
(matt)-[:LIKES]->(mango),
(jeff)-[:LIKES]->(mango),
(brie)-[:LIKES]->(banana),
(elsa)-[:LIKES]->(plum),
(john)-[:LIKES]->(plum),
(dan)-[:KNOWS]->(annie),
(dan)-[:KNOWS]->(matt),
(annie)-[:KNOWS]->(matt),
(annie)-[:KNOWS]->(jeff),
(annie)-[:KNOWS]->(brie),
(matt)-[:KNOWS]->(brie),
(brie)-[:KNOWS]->(elsa),
(brie)-[:KNOWS]->(jeff),
(john)-[:KNOWS]->(jeff);
"""
# making sure the database is actually empty
assert gds.run_cypher("MATCH (n) RETURN count(n)").squeeze() == 0, "Database is not empty!"
# let's now write our graph!
gds.run_cypher(data_query)
gds.run_cypher("MATCH (n) RETURN count(n) AS nodeCount")
6. 投影图
将图导入数据库后,您可以将其投影到我们的 GDS 会话中。您可以通过使用 gds.graph.project()
端点来完成。
您使用的远程投影查询选择所有 Person
节点及其 LIKES
关系,以及所有 Fruit
节点及其 LIKES
关系。此外,节点属性也为演示目的而被投影。您可以将这些节点属性用作算法的输入,尽管本笔记本中未这样做。
G, result = gds.graph.project(
"people-and-fruits",
"""
CALL {
MATCH (p1:Person)
OPTIONAL MATCH (p1)-[r:KNOWS]->(p2:Person)
RETURN
p1 AS source, r AS rel, p2 AS target,
p1 {.age, .experience, .hipster } AS sourceNodeProperties,
p2 {.age, .experience, .hipster } AS targetNodeProperties
UNION
MATCH (f:Fruit)
OPTIONAL MATCH (f)<-[r:LIKES]-(p:Person)
RETURN
p AS source, r AS rel, f AS target,
p {.age, .experience, .hipster } AS sourceNodeProperties,
f { .tropical, .sourness, .sweetness } AS targetNodeProperties
}
RETURN gds.graph.project.remote(source, target, {
sourceNodeProperties: sourceNodeProperties,
targetNodeProperties: targetNodeProperties,
sourceNodeLabels: labels(source),
targetNodeLabels: labels(target),
relationshipType: type(rel)
})
""",
)
str(G)
7. 运行算法
您可以使用标准的 GDS Python 客户端 API 在构建的图上运行算法。有关更多示例,请参阅其他教程。
print("Running PageRank ...")
pr_result = gds.pageRank.mutate(G, mutateProperty="pagerank")
print(f"Compute millis: {pr_result['computeMillis']}")
print(f"Node properties written: {pr_result['nodePropertiesWritten']}")
print(f"Centrality distribution: {pr_result['centralityDistribution']}")
print("Running FastRP ...")
frp_result = gds.fastRP.mutate(
G,
mutateProperty="fastRP",
embeddingDimension=8,
featureProperties=["pagerank"],
propertyRatio=0.2,
nodeSelfInfluence=0.2,
)
print(f"Compute millis: {frp_result['computeMillis']}")
# stream back the results
gds.graph.nodeProperties.stream(G, ["pagerank", "fastRP"], separate_property_columns=True, db_node_properties=["name"])
8. 写回 Neo4j
GDS 会话的内存图是从我们指定的 Neo4j 数据库中的数据投影而来的。因此,写回操作会将数据持久化回相同的 Neo4j 数据库。让我们将 PageRank 和 FastRP 算法的结果写回 Neo4j 数据库。
# if this fails once with some error like "unable to retrieve routing table"
# then run it again. this is a transient error with a stale server cache.
gds.graph.nodeProperties.write(G, ["pagerank", "fastRP"])
当然,您也可以只使用 .write
模式。让我们以写入模式运行 Louvain 来展示
gds.louvain.write(G, writeProperty="louvain")
您现在可以使用 gds.run_cypher()
方法来查询更新后的图。请注意,run_cypher()
方法将在 Neo4j 数据库上运行查询。
gds.run_cypher(
"""
MATCH (p:Person)
RETURN p.name, p.pagerank AS rank, p.louvain
ORDER BY rank DESC
"""
)
9. 删除会话
完成分析后,您可以删除会话。您生成的结果已写回我们的 Neo4j 数据库,不会丢失。如果您计算了其他未写回的内容,那些内容将会丢失。
删除会话将释放与其关联的所有资源,并停止产生费用。
# or gds.delete()
sessions.delete(session_name="people-and-fruits-sm")
# let's also make sure the deleted session is truly gone:
sessions.list()
# Lastly, let's clean up the database
gds.run_cypher("MATCH (n:Person|Fruit) DETACH DELETE n")