AuraDB 的无服务器图分析

Open In Colab

此 Jupyter Notebook 托管在 Neo4j 图数据科学客户端 Github 仓库的此处

该 Notebook 演示了如何使用 graphdatascience Python 库来创建、管理和使用 GDS 会话。

我们考虑一个人物与水果的图,以此作为简单示例,演示如何将您的 AuraDB 实例连接到 GDS 会话,运行算法,并最终将分析结果写回 AuraDB 数据库。我们将涵盖所有管理操作:创建、列出和删除。

如果您使用自管理数据库,请遵循此示例

1. 先决条件

此 Notebook 要求您拥有一个可用的 AuraDB 实例,并且为您的项目启用了无服务器图分析功能

您还需要安装 graphdatascience Python 库,版本 1.15 或更高。

%pip install "graphdatascience>=1.15"

2. Aura API 凭证

管理 GDS 会话的入口点是 GdsSessions 对象,它需要创建Aura API 凭证

import os

from graphdatascience.session import AuraAPICredentials, GdsSessions

client_id = os.environ["AURA_API_CLIENT_ID"]
client_secret = os.environ["AURA_API_CLIENT_SECRET"]

# If your account is a member of several project, you must also specify the project ID to use
project_id = os.environ.get("AURA_API_PROJECT_ID", None)

sessions = GdsSessions(api_credentials=AuraAPICredentials(client_id, client_secret, project_id=project_id))

3. 创建新会话

通过调用 sessions.get_or_create() 并传入以下参数来创建新会话:

  • 会话名称,通过再次调用 get_or_create,您可以使用此名称重新连接到现有会话。

  • 包含 AuraDB 实例的地址、用户名和密码的 DbmsConnectionInfo

  • 会话内存。

  • 云位置。

  • 生存时间 (TTL),它确保会话在闲置达到设定时间后自动删除,以避免产生费用。

有关参数的更多详细信息,请参阅 API 参考文档或手册。

from graphdatascience.session import AlgorithmCategory, SessionMemory

# Explicitly define the size of the session
memory = SessionMemory.m_8GB

# Estimate the memory needed for the GDS session
memory = sessions.estimate(
    node_count=20,
    relationship_count=50,
    algorithm_categories=[AlgorithmCategory.CENTRALITY, AlgorithmCategory.NODE_EMBEDDING],
)
from datetime import timedelta

from graphdatascience.session import DbmsConnectionInfo

# Identify the AuraDB instance
db_connection = DbmsConnectionInfo(
    uri=os.environ["AURA_DB_ADDRESS"], username=os.environ["AURA_DB_USER"], password=os.environ["AURA_DB_PW"]
)

# Create a GDS session!
gds = sessions.get_or_create(
    # we give it a representative name
    session_name="people_and_fruits",
    memory=SessionMemory.m_4GB,
    db_connection=db_connection,
    ttl=timedelta(minutes=2),
)

4. 列出会话

您可以使用 sessions.list() 来查看每个已创建会话的详细信息。

from pandas import DataFrame

gds_sessions = sessions.list()

# for better visualization
DataFrame(gds_sessions)

5. 添加数据集

我们假设已配置的 AuraDB 实例为空。我们将使用标准 Cypher 添加我们的数据集。

在更真实的场景中,此步骤已经完成,我们只需连接到现有数据库。

data_query = """
  CREATE
    (dan:Person {name: 'Dan',     age: 18, experience: 63, hipster: 0}),
    (annie:Person {name: 'Annie', age: 12, experience: 5, hipster: 0}),
    (matt:Person {name: 'Matt',   age: 22, experience: 42, hipster: 0}),
    (jeff:Person {name: 'Jeff',   age: 51, experience: 12, hipster: 0}),
    (brie:Person {name: 'Brie',   age: 31, experience: 6, hipster: 0}),
    (elsa:Person {name: 'Elsa',   age: 65, experience: 23, hipster: 1}),
    (john:Person {name: 'John',   age: 4, experience: 100, hipster: 0}),

    (apple:Fruit {name: 'Apple',   tropical: 0, sourness: 0.3, sweetness: 0.6}),
    (banana:Fruit {name: 'Banana', tropical: 1, sourness: 0.1, sweetness: 0.9}),
    (mango:Fruit {name: 'Mango',   tropical: 1, sourness: 0.3, sweetness: 1.0}),
    (plum:Fruit {name: 'Plum',     tropical: 0, sourness: 0.5, sweetness: 0.8})

  CREATE
    (dan)-[:LIKES]->(apple),
    (annie)-[:LIKES]->(banana),
    (matt)-[:LIKES]->(mango),
    (jeff)-[:LIKES]->(mango),
    (brie)-[:LIKES]->(banana),
    (elsa)-[:LIKES]->(plum),
    (john)-[:LIKES]->(plum),

    (dan)-[:KNOWS]->(annie),
    (dan)-[:KNOWS]->(matt),
    (annie)-[:KNOWS]->(matt),
    (annie)-[:KNOWS]->(jeff),
    (annie)-[:KNOWS]->(brie),
    (matt)-[:KNOWS]->(brie),
    (brie)-[:KNOWS]->(elsa),
    (brie)-[:KNOWS]->(jeff),
    (john)-[:KNOWS]->(jeff);
"""

# making sure the database is actually empty
assert gds.run_cypher("MATCH (n) RETURN count(n)").squeeze() == 0, "Database is not empty!"

# let's now write our graph!
gds.run_cypher(data_query)

gds.run_cypher("MATCH (n) RETURN count(n) AS nodeCount")

6. 投影图

现在我们已将图导入数据库,可以将其投影到我们的 GDS 会话中。我们通过使用 gds.graph.project() 端点来完成此操作。

我们使用的远程投影查询会选择所有 Person 节点及其 LIKES 关系,以及所有 Fruit 节点及其 LIKES 关系。此外,我们出于演示目的投影节点属性。尽管我们在此 Notebook 中没有这样做,但我们可以将这些节点属性用作算法的输入。

G, result = gds.graph.project(
    "people-and-fruits",
    """
    CALL {
        MATCH (p1:Person)
        OPTIONAL MATCH (p1)-[r:KNOWS]->(p2:Person)
        RETURN
          p1 AS source, r AS rel, p2 AS target,
          p1 {.age, .experience, .hipster } AS sourceNodeProperties,
          p2 {.age, .experience, .hipster } AS targetNodeProperties
        UNION
        MATCH (f:Fruit)
        OPTIONAL MATCH (f)<-[r:LIKES]-(p:Person)
        RETURN
          p AS source, r AS rel, f AS target,
          p {.age, .experience, .hipster } AS sourceNodeProperties,
          f { .tropical, .sourness, .sweetness } AS targetNodeProperties
    }
    RETURN gds.graph.project.remote(source, target, {
      sourceNodeProperties: sourceNodeProperties,
      targetNodeProperties: targetNodeProperties,
      sourceNodeLabels: labels(source),
      targetNodeLabels: labels(target),
      relationshipType: type(rel)
    })
    """,
)

str(G)

7. 运行算法

您可以使用标准 GDS Python 客户端 API 在构建的图上运行算法。有关更多示例,请参阅其他教程。

print("Running PageRank ...")
pr_result = gds.pageRank.mutate(G, mutateProperty="pagerank")
print(f"Compute millis: {pr_result['computeMillis']}")
print(f"Node properties written: {pr_result['nodePropertiesWritten']}")
print(f"Centrality distribution: {pr_result['centralityDistribution']}")

print("Running FastRP ...")
frp_result = gds.fastRP.mutate(
    G,
    mutateProperty="fastRP",
    embeddingDimension=8,
    featureProperties=["pagerank"],
    propertyRatio=0.2,
    nodeSelfInfluence=0.2,
)
print(f"Compute millis: {frp_result['computeMillis']}")
# stream back the results
gds.graph.nodeProperties.stream(G, ["pagerank", "fastRP"], separate_property_columns=True, db_node_properties=["name"])

8. 写回 AuraDB

GDS 会话的内存图是从我们指定的 AuraDB 实例中的数据投影而来的。因此,写回操作会将数据持久化回同一个 AuraDB。让我们将 PageRank 和 FastRP 算法的结果写回 AuraDB 实例。

# if this fails once with some error like "unable to retrieve routing table"
# then run it again. this is a transient error with a stale server cache.
gds.graph.nodeProperties.write(G, ["pagerank", "fastRP"])

当然,我们也可以直接使用 .write 模式。让我们以写入模式运行 Louvain 来演示

gds.louvain.write(G, writeProperty="louvain")

现在我们可以使用 gds.run_cypher() 方法来查询更新后的图。请注意,run_cypher() 方法将在 AuraDB 实例上运行查询。

gds.run_cypher(
    """
    MATCH (p:Person)
    RETURN p.name, p.pagerank AS rank, p.louvain
     ORDER BY rank DESC
    """
)

9. 删除会话

现在我们已经完成了分析,可以删除会话。我们生成的结果已写回 AuraDB 实例,不会丢失。如果我们计算了其他未写回的内容,那些将会丢失。

删除会话将释放所有相关资源,并停止产生费用。

sessions.delete(session_name="people_and_fruits")

# or gds.delete()
# let's also make sure the deleted session is truly gone:
sessions.list()
# Lastly, let's clean up the database
gds.run_cypher("MATCH (n:Person|Fruit) DETACH DELETE n")