GraphGists

使用旧金山湾区地图学习 Cypher

目标

本练习的目的是通过使用常见的领域:道路和城市来学习图数据库和一些社交网络概念。我无需解决任何具体问题。

场景和使用案例

我们许多人每天都使用谷歌地图服务来找出从 A 点到 B 点的最佳路线,是否有替代路线,哪条路线最快或最便宜。受 最初的图论问题启发:“莱昂哈德·欧拉在 1736 年发表的关于柯尼斯堡七桥的论文被认为是图论史上第一篇论文”,我将使用简化的旧金山湾区道路地图来回答一些问题。在我的图中包含 3 座桥梁,将来我或许也可以提出更多有趣的问题。

Konigsbery Bridge

我选择了一些主要城镇和连接它们的公路。为简单起见,我最初只输入部分数据来开始学习。

sfbay map with nodes and links

模型

我从一个简单的模型开始,只包含节点(城市)和链接(公路)。

simple sfbay road map

然后我添加了更多地点,如大学、体育场和机场,并与城市之间存在 [:has] 关系。

sfbay city with objects
CREATE (n01:City {name: 'Mountain View', population: 77646}),
	(n02:City {name: 'Palo Alto', population: 66642}),
	(n18:City {name: 'Sunnyvale', population: 147559}),
	(n14:City {name: 'Fremont', population: 224922}),
	(n15:City {name: 'Milpitas', population: 69783}),
	(n16:City {name: 'Santa Clara', population: 120245}),
	(n17:City {name: 'San Jose', population: 998537}),
	(n19:City {name: 'Cupertino', population: 60189}),
	(n26:City {name: 'Athetron', population: 7159}),

	(n01)-[:connect_to {distance: 5.5}]->(n02),		// mtv - pa
	(n01)-[:connect_to {distance: 2.9}]->(n18),		// mtv - snyl
	(n02)-[:connect_to {distance: 4.2}]->(n26),		// pa - atht
	(n26)-[:connect_to {distance: 17.1, linkType: 'bridge', toll: 0}]->(n14),	// atht - frmt
	(n14)-[:connect_to {distance: 11.2}]->(n15),		// frmt - mlpt
	(n16)-[:connect_to {distance: 5.1}]->(n18),		// stcl - snyl
	(n16)-[:connect_to {distance: 4.1}]->(n17),		// stcl - sjs
	(n16)-[:connect_to {distance: 7.4}]->(n19),		// stcl - cptn
	(n17)-[:connect_to {distance: 11.8}]->(n15),		// sjs - mlpt
	(n17)-[:connect_to {distance: 10.3}]->(n19),		// stcl - cptn
	(n18)-[:connect_to {distance: 9.9}]->(n15),		// snyl - mlpt
	(n18)-[:connect_to {distance: 3.3}]->(n19),		// snyl - cptn
	(n02)-[:connect_to {distance: 5.5}]->(n01),		// <<==start reverse direction
	(n18)-[:connect_to {distance: 2.9}]->(n01),
	(n26)-[:connect_to {distance: 4.2}]->(n02),
	(n14)-[:connect_to {distance: 17.1, linkType: 'bridge', toll: 5}]->(n26),
	(n15)-[:connect_to {distance: 11.2}]->(n14),
	(n18)-[:connect_to {distance: 5.1}]->(n16),
	(n17)-[:connect_to {distance: 4.1}]->(n16),
	(n19)-[:connect_to {distance: 7.4}]->(n16),
	(n17)-[:connect_to {distance: 11.8}]->(n15),
	(n19)-[:connect_to {distance: 10.3}]->(n17),
	(n15)-[:connect_to {distance: 9.9}]->(n18),
	(n19)-[:connect_to {distance: 3.3}]->(n18),
	(n17)-[:train_to {distance: 4.0}]->(n16),		// <<==start train
	(n16)-[:train_to {distance: 5.1}]->(n18),
	(n18)-[:train_to {distance: 2.9}]->(n01),
	(n01)-[:train_to {distance: 5.5}]->(n02),
	(n02)-[:train_to {distance: 4.2}]->(n26),
	(n16)-[:train_to {distance: 4.0}]->(n17),		// dropped 0.1 mile
	(n18)-[:train_to {distance: 5.1}]->(n16),
	(n01)-[:train_to {distance: 2.9}]->(n18),
	(n02)-[:train_to {distance: 5.5}]->(n01),
	(n26)-[:train_to {distance: 4.2}]->(n02),
	(s01:School {name: 'Stanford University'}),		// <<== add more places
	(s02:School {name: 'Foothill Community College'}),
	(s03:School {name: 'San Jose State University'}),
	(s04:School {name: 'De Anza College'}),
	(s05:School {name: 'Santa Clara University'}),
	(a01:Airport {name: 'Mineta San Jose International Airport'}),
	(n02)-[:has]->(s01), 					// <<== connect places to cities
	(n01)-[:has]->(s02),
	(n17)-[:has]->(s03),
	(n19)-[:has]->(s04),
	(n16)-[:has]->(s05),
	(n17)-[:has]->(a01)

查找所有拥有学校的城市

// find out all cities have school
MATCH (n:City)-[:has]->(m:School) RETURN n.name, m.name

查找圣何塞有哪些类型的地点

match (n {name: 'San Jose'})-[r:has]->(m)
return n.name, m.name

查找从帕洛阿尔托到圣克拉拉的最短距离

MATCH p = allShortestPaths((s {name: 'Palo Alto'})-[r:connect_to*..5]->(d {name: 'Milpitas'}))
RETURN NODES(p)

查找从城市 A 到城市 B 的最短路线

MATCH p=(a {name: 'Palo Alto'})-[r*2..5]->(b {name: 'Milpitas'})
WHERE NOT(a-->b) 			// where a is not directly connected to b
WITH p, relationships(p) AS rcoll 	// just for readability, alias rcoll
RETURN p, reduce(totalDistance=0, x IN rcoll| totalDistance + x.distance) AS totalDistance
ORDER BY totalDistance
LIMIT 1

我学到了什么?

  • 这很有趣。

  • 我应该使用东帕洛阿尔托作为节点,而不是阿瑟顿 (节点-26)。

  • 接下来需要做什么

    • 研究 shortestPath 算法和更复杂的查询。

    • 学习编写 API 和 Web UI 来与服务器交互。

其他

以下信息可能不属于此处,但我目前需要将它们全部保存在一个地方。由于我想在 Gephi 中使用图数据库,因此我需要导出数据。GraphML 是 Neo4j 和 Gephi 都通用的文件格式。我按照 Lorenzo Speranzoni 的博客 - 如何将 Neo4Art 图数据库加载到 Gephi 中 安装了该工具,将数据导出为 GraphML 文件并导入到 Gephi 中。我计算了一些社交网络、偏心率、中心性等,它可以工作。

imported data to gephi data laboratory
neo4j database in gephi overview

我还安装了 Cytoscape 并导入了相同的 GraphML 文件,它也可以工作。非常好。